A simple pendulum is placed on an elevator that accelerates upward as shown. If the pendulum is displaced an amount \(\theta_0 \) and released from rest relative to the elevator, find the tension \(T_0 \) in the supporting light rod when \(\theta = 0 \).

\[\text{II. A small mass particle is given an initial velocity } v_0 \text{ tangent to the horizontal rim of a smooth hemispherical bowl at a radius } r_0 \text{ from the vertical centerline, as shown at point } A. \text{ As the particle slides past point } B, \text{ a distance } h \text{ below } A \text{ and a distance } r \text{ from the vertical centerline, its velocity } v \text{ makes an angle } \theta \text{ with the horizontal tangent to the bowl through } B. \text{ Determine } \theta. \]
III. The wheel of radius r is free to rotate about the bent axle CO that turns about the vertical axis at the constant rate p rad/s. If the wheel rolls without slipping on the horizontal circle of radius R, determine the expressions for the angular velocity ω and angular acceleration α of the wheel. The x-axis is always horizontal.

(25%)

IV. A car door is inadvertently left slightly open when the brakes are applied to give the car a constant rearward acceleration a. Derive expressions for the angular velocity of the door as it swings past the 90° position and the components of the hinge reactions for any value of θ. The mass of the door is m, its mass center is a distance \bar{r} from the hinge axis O, and the radius of gyration about O is k_O.

(25%)