1. (a) The transistors in Figure P1a have same common emitter current gain β, and the small signal parameters include g_{m1} to g_{m4}, r_{n1} to r_{n4}, and r_{o1} to r_{o4}. Determine the output resistance R_{o1}. (10%)

(b) The transistors in Figure P1b have small signal parameters include g_{m1} to g_{m4}, and r_{o1} to r_{o4}. Determine the output resistance R_{o2}. (10%)

2. The parameters of the transistors in the circuit in Figure P2 are $V_{TND} = V_{TNL} = 0.6 \text{ V}$, $K_{ND} = 0.5 \text{ mA/V}^2$, $K_{NL} = 2 \text{ mA/V}^2$, and $\lambda_D = \lambda_L = 0$. Plot the relationship of V_o versus V_I over the range $0 \leq V_I \leq 5 \text{ V}$. (10%)

3. For the circuit shown in Figure P3, the small signal parameters include g_m and r_w, derive the expression of the 3dB frequency associated with coupling capacitor C_{C1} and C_{C2} respectively. (20%)
4. For the circuit in Figure P4, derive the expressions for the voltage transfer function \(T(s) = \frac{V_o(s)}{V_i(s)} \) and the cutoff frequency \(f_{cbb} \). (20%)

![Figure P4](image1)

5. Consider the oscillator circuit in Figure P5, find the loop gain function, the frequency of oscillation, and the \(R_2/R_1 \) required for oscillation. (20%)

![Figure P5](image2)

6. Consider a power MOSFET for which the thermal resistance parameters are: \(\theta_{dev-case} = 2^\circ \text{C/W} \), \(\theta_{case-sok} = 1^\circ \text{C/W} \), and \(\theta_{sink-amb} = 4^\circ \text{C/W} \). The ambient temperature is \(T_{amb} = 25^\circ \text{C} \), and the maximum junction or device temperature is \(T_{j,max} = T_{dev} = 150^\circ \text{C} \). Determine the maximum power dissipation in a transistor and determine the temperature of the transistor case and heat sink. (10%)