1. A frequency-domain network with an unknown load Z is shown in Fig. P1. If $I_s = 2 \angle 0^\circ$ A, please find the impedance of Z so that the amplitude of the terminal voltage V has a maximum value. (15 分)

![Fig. P1](image)

2. The dc circuit in Fig. P2 has $V_s = 20 \Omega \times i_s$. Please find i_1 and i_2. (20 分)

![Fig. P2](image)

3. (a) The circuit in Fig. P3 has $i_s = 1$ A, $L=1$ H, and $C=0.5$ F. Please find i_1, i_2, and v_n, under dc steady-state conditions. (6 分)

(b) Following part (a), if $i_s = -1$ A for $t > t_i$, (i.e. i_s changes polarity at t_i), please find $i_1(t^+_i)$, $i_2(t^+_i)$, and $v_n(t^+_i)$. (9 分)

![Fig. P3](image)
4. For the circuit shown in Fig. P4, the switch is originally open before \(t=0 \). At \(t=0 \), the switch is closed. Find \(v(t) \) and \(i(t) \) for \(t>0 \) (20 分)

![Fig. P4](image)

5. Determine the voltage \(V_o \) in the circuit of Fig. P5 (15 分)

![Fig. P5](image)

6. For the Sallen-Key low-pass filter shown in Fig. P6, find the transfer function

\[
H(s) = \frac{V_{out}(s)}{V_{in}(s)} \] (15 分)

![Fig. P6](image)