Problem 1: (20 points) 【證明題】

The unilateral Laplace transform is defined as shown below

\[L(f(t)) = F(s) = \int_0^\infty f(t)e^{-st}dt, \]

and define \(f(0^-) \) be the pre-initial value and \(f(0^+) \) the post-initial value of \(f(t) \) at the initial time \(t = 0 \).

(a) Prove that \(L(f'(t)) = sF(s) - f(0^-) \). (7 points)

(b) Prove that \(f(0^+) = \lim_{s \to \infty} sF(s) \). (7 points)

(c) Prove that \(L(\int_0^t f(t)dt) = \frac{F(s)}{s} \). (6 points)

Problem 2: (30 points and 3 points each)

Answer each question "Yes" or "No". Just write down your answer, there is no need to specify the reasons.【是非題：只需回答是(Yes)或否(No)，無需說明任何理由或計算過程，將是非題答案填寫於答案紙內，於試題紙上作答不予計分】

(1) A system with input \(u(t) \) and output \(y(t) = |u(t)| \) is a linear system.

(2) A system with input \(u(t) \) and output \(y(t) = u(t-T), T > 0 \) is a causal system.

(3) Given the Laplace transform \(L(f(t)) = F(s) = \frac{a}{s(a^2 + a)}, a > 0 \), then

\[\lim_{s \to 0^+} f(t) = \lim_{s \to 0^+} sF(s) = 1. \]

(4) For a linear time-invariant (LTI) system, the system's step response is the inverse Laplace transform of the system transfer function.

(5) For a linear time-invariant system, if it is BIBO (bounded-input bounded-output) stable, then it is also asymptotically stable.

(6) Given a linear time-invariant stable type-1 unity negative-feedback system, the steady state error of a step response is zero.

For Problems (7–10), let’s consider an unity negative-feedback system with loop transfer function \(L(s) = \frac{K}{(s+2)(s+10)}, K > 0 \).

(7) If the gain \(K \) is increasing, then the gain margin \(GM \) is decreasing.

(8) If the gain \(K \) is increasing, then the phase margin \(PM \) is also increasing.

(9) If the gain \(K \) is increasing, then the gain crossover frequency \(\omega_c \) is also increasing.

(10) The closed-loop system is an over-damped system for all \(K > 0 \).
Problem 3: (13 points)

Consider the following periodic function $f(t)$ in one period described as

![Diagram of a periodic function]

Find its Laplace transform (i.e., $F(s)$).

Problem 4: (13 points)

Find the relation between $R(s)$ and $Y(s)$.

![Control system diagram]

Problem 5: (24 points)

Consider a negative unit feedback system with forward transfer function $G(s) = ke^{-0.2s}/[s(1 + 0.1s)]$. (a) For $k = 2.5$, find the GM (gain margin), PM (phase margin), ω_s (gain-crossover frequency) and ω_p (phase-crossover frequency) (16 points). (b) Determine the value of k such that the closed-loop system is unstable (8 points).