1. An electromechanical system shown in Figure 1 represents a moveable-plate capacity. Assume that the plate \(a \) of the parallel capacitor is fixed and the plate \(b \) with mass \(M \) is moved by force \(f \). If the capacitor \(C(d) = \frac{\epsilon A}{d} \), where \(\epsilon \) is the dielectric constant, \(A \) is the surface of the plates, and \(d \) is the separation distance of the plates, then the electric field produces a force opposing the motion of the plates, and it is related to the charge \(q \) across the plates: \(f_e = \frac{q^2}{2\epsilon A} \).

(a) Find the differential equations of this system. \hspace{1cm} (10\%)
(b) Find the Laplace transforms of the differential equations in part (a). \hspace{1cm} (10\%)

![Figure 1](image_url)

2. A unity feedback control system shown in Figure 2(a) is designed so that its closed-loop poles lie within the region shown in Figure 2(b).

(a) Find the natural frequency \(\omega_n \) and the damping ratio \(\zeta \). \hspace{1cm} (5\%)
(b) If \(K_p = 2 \) and \(p = 2 \), then find the values for \(K \) and \(K_f \). \hspace{1cm} (5\%)
(c) Show that, regardless of values \(K_p \) and \(p \), the controller can be designed to place the poles anywhere in the left side of the s-plane. \hspace{1cm} (3\%)

![Figure 2(a)](image_url)
3. Figure 3 shows a block diagram, where $G_p(s) = \frac{1000K}{s(s + a)}$. Design $G_D(s)$ and $G_c(s)$ so that the following performance specifications are satisfied.

- Ramp-error constant $K_r = 100$ when $a = 100$
- Rise time $T_r < 0.3$ sec
- Maximum overshoot < 8%
- Dominant characteristic equation roots $= -5 \pm 5j$
- System must be robust when a varies between 8 and 12 (15%)
4. The feedback $H = (1 + K_s)$ as shown below can represent a parallel combination of direct feedback and minor loop rate feedback. If $G(s) = K((s^2 + 2s + 3.25)$ represents a spring-mass-damper system with a position output and a force input:
(a) Find the constraints on K and/or K_s for a steady-state error of 10% following step inputs. (8%)
(b) Calculate the value of K_s for a damping ratio 0.707 from the quadratic characteristic equation, and use the corresponding roots in sketching the loci for varying K_s. (7%)

5. For the system shown below with $G(s) = (s + 1)/(s + 2)$:
(a) Find the value of K required for a system time constant $T = 0.667$ sec. (8%)
(b) Calculate the corresponding unit step response. (7%)

6. For the system shown below with $G(s) = 1/[s(s+1)(s+4)]$:
(a) Find the limit on K for stability. At this limit, determine the position of the system poles on the imaginary axis of the s-plane. (10%)

(b) Determine the limit on the value of K for stability if the amplifier K of part (a) is replaced by a dynamic compensator

$$K(0.5s + 1)$$
$$0.1s + 1$$

Where on the imaginary axis is a root pair located at this limit?