1. The parameters of the mechanical system are
 \[M = 1000 \text{ kg}, \quad B = 10000 \text{ N/(m/sec)}, \quad K = 100000 \text{ N/m} \]

 A step force of 1000 N is applied to the mass at \(t = 0 \). The initial conditions are \(y(0) = y'(0) = 0 \). Find the damping ratio, undamped natural frequency and damped natural frequency. (15%)

2. 一個系統由以下微分方程式所描述
 \[y''(t) + 7y'(t) + 6y(t) = 6r(t); \quad y(0) = y'(0) = 0 \]
 找出系統對輸入 \(r(t) = \sin 2t \) 的穩態響應。 (15%)

3. 對以下的特性方程式，畫出根軌跡圖。 (20%)
 \[1 + \frac{K}{s(s^2 + 6s + 10)} = 0; \quad K \geq 0 \]

4. In the Figure shown below with \(G(s) = 1/[(s+1)(s+7)] \):

 (1) Find the lowest value of \(K \) that will minimize the settling time. (5%)
 (2) Find \(K \) and the corresponding steady-state error for a unit step to obtain a system damping ratio of about 0.7. (5%)
 (3) Compare the settling times of parts (1) and (2). Which is the best to minimize rise time, and why? (5%)
5. For a unity feedback motor position servo with loop gain function

\[G(s) = \frac{K}{s(0.25s + 1)(0.1s + 1)} \]

(1) Sketch the loci of the closed-loop system poles for varying \(K \). (8%)
(2) Find \(K \) for a damping ratio 0.5 of the dominating pair. (7%)

6. Referring to the Figure shown below, where \(k \) is the spring constant, \(b \) is the damping coefficient. A man drops a steel ball of mass \(m \) onto the center of mass \(M \) from a height \(d \) and catches it on the first bounce. Assuming that the system is initially at rest, what is the motion of mass \(M \) after it is hit by the steel ball? Assume that the impact is perfectly elastic. In addition, assume that the numerical values of \(M, m, b, k \), and \(d \) are given as \(M=1 \text{ kg}, m=0.1 \text{ kg}, b=4 \text{ N-s/m}, k=125 \text{ N/m}, \) and \(d=1 \text{ m} \). The displacement \(x \) of mass \(M \) is measured from the equilibrium position before the ball hits it. The initial conditions are \(x(0) = 0 \) and \(\dot{x}(0) = 0 \). (10%)

7. Consider the spring-mass system as shown below, \(k \) is the spring constant. The system is initially at rest, or \(x(0) = 0 \) and \(\dot{x}(0) = 0 \). At \(t=0 \) a force \(p(t) = P \cos \omega t \) is applied to the mass \(m \). When the numerical values of \(m, k, P, \) and \(\omega \) are given as \(m=1 \text{ kg}, k=100 \text{ N/m}, P=50 \text{ N}, \) and \(\omega=5 \text{ rad/sec} \), find the solution \(x(t) \). (10%)