(Show every step of your solution.)

1. (8 points) Determine the number of integer solutions of \(x_1 + x_2 + x_3 < 16 \), where \(x_i \geq 2 \) for \(3 \geq i \geq 1 \).

2. (8 points) Determine the value of positive integer \(k \) such that \((7k^3 - 21k^2 + k - 3) \) is a prime number.

3. (8 points) Determine the number of strings in \(A^3 \) and \(A^4 \), where the alphabet set \(A \) is defined as \(A = \{v, x, y, z\} \).

4. (8 points) If \((Z_{15}, *) \) is a cyclic group, find all generators of \((Z_{15}, *) \).

5. (8 points) Let \(B = \{a, b, c, d, e\} \). Determine the number of relations on \(B \) that are reflexive and symmetric.

6. (10 points) Given \(k \) matrices \(A_1, A_2, \ldots, A_k \), assume the matrix-multiplication-chain \(A_1 \times A_2 \times \ldots \times A_k \) follows the association law.
 (1) (5 points) Write down the recurrence relation for counting the number of ways for calculating the matrix-multiplication-chain \(A_1 \times A_2 \times \ldots \times A_k \).
 (2) (5 points) Solve your derived recurrence relation.

7. (20 points)
 (a) (8 points) Find a basis that spans the plane \(x + 2y + z = 0 \).
 (b) (7 points) Find the matrix that represents the projection onto the plane \(x + 2y + z = 0 \).
 (c) (5 points) Find the matrix that represents the reflection of through the plane \(ax + by + cz = 0 \), where \((a, b, c) \) is a unit vector.

8. (8 points) Mike chooses either pizza or sandwich for lunch. If he chooses pizza for lunch one day, there is a \(\frac{2}{3} \) chance that he chooses pizza again the next day. If he chooses sandwich for lunch one day, there is a \(\frac{3}{7} \) chance that he chooses pizza the next day. Over the long term, what is the chance that Mike chooses pizza for lunch on any given day?

9. (10 points) Find a curve of the form \(y = a + (\frac{b}{x}) \) that best fits the data set \(\{(2, 3), (1, 4), (4, 1)\} \).

10. (12 points) Let \(B_1 = \{(1, 1), (1, -1)\} \) and \(B_2 = \{(1, 1, 0), (0, 1, 1), (1, 0, 1)\} \) be bases of \(\mathbb{R}^2 \) and \(\mathbb{R}^3 \) respectively, and \(A = \begin{pmatrix} 2 & 1 \\ 1 & 3 \\ 1 & 0 \end{pmatrix} \) be the matrix of a linear transformation \(T : \mathbb{R}^2 \rightarrow \mathbb{R}^3 \) with respect to \(B_1 \) and \(B_2 \). Find the matrix of \(T \) with respect to the standard bases of \(\mathbb{R}^2 \) and \(\mathbb{R}^3 \).