1. (24%) Which of the following statement(s) is/are correct? (2/3 for each)
 (a) If \(A \) is an \(n \times n \) matrix and \(A^2 = 0 \), then \(I_n + A \) is invertible, where \(I_n \) is the identity matrix.
 (b) There exists a 2 \(\times \) 2 matrix \(A \) such that the space of all matrices commuting with \(A \) is two dimensional.
 (c) If \(A \) is an \(n \times n \) matrix and \(A^T A = AA^T \), then \(A \) is orthogonal.
 (d) If \(A \) is an \(n \times n \) matrix, then \(\text{Ker}(A) = \text{Ker}(A^T A) \).
 (e) There is a 3 \(\times \) 3 matrix \(A \) such that \(A^3 = 0 \) and 1 is one of \(A \)'s eigenvalue.
 (f) Every two-dimensional subspace of \(\mathbb{R}^{2 \times 2} \) contains an invertible matrix.
 (g) There exists real invertible 4 \(\times \) 4 matrices \(A \) and \(P \) such that \(P^{-1} A P = 3 A \).
 (h) If \(A \) is a 2 \(\times \) 2 matrix and \(AA^T = A^2 \), then \(A \) is symmetric.

2. (15%) Let \(B_1 = \{ (1, 0, 1), (1, 1, 1), (-1, 0, 0) \} \) and \(B_2 = \{ (0, 3, -2), (-1, 10, -7), (1, -8, 6) \} \) be two bases of \(\mathbb{R}^3 \).
 (a) (5%) What is the matrix that converts \(B_1 \)-coordinates to \(B_2 \)-coordinates in \(\mathbb{R}^3 \)?
 (b) (10%) Let \(T : \mathbb{R}^3 \to \mathbb{R}^3 \) be a linear operator and \([T]_{B_1} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 2 & 0 \end{pmatrix} \). Find \([T]_{B_2} \).

3. (11%) Let \(A = \begin{pmatrix} 4 & 3 & 0 & 0 \\ -2 & -1 & 0 & 0 \\ 0 & 0 & 4 & 3 \\ 0 & 0 & -3 & -2 \end{pmatrix} \).
 (a) (5%) Find the eigenvalues of \(A \).
 (b) (6%) Find an orthogonal basis of \(A \)'s column space.

4. (10%) Which of the following statement(s) is/are correct? (2/3 for each)
 (a) \(((p \lor r) \land (p \rightarrow q) \land (r \rightarrow q)) \rightarrow q \) is a tautology.
 (b) \(\forall x \exists y (\neg P(x, y)) \lor \forall x \exists y (\neg P(x, y)) \equiv \exists x (\forall y (\exists x \neg P(x, y))) \land \exists y (\forall x \neg P(x, y)) \).
 (c) \(\exists x \forall y (xy = x) \), where the domain for all variables consists of all integers.
 (d) Let \(A \) and \(B \) be sets. \((B - A) \cup (\overline{A} \cup B) = (A \cup B) \cap B \).
 (e) Let \(A \) be the set of real numbers and \(B \) be the set of negative real numbers. Then \(A - B \) is countably infinite.

5. (5%) Let \(f(x) = \frac{1}{(x^2 + 1)} \) be a function from \(\mathbb{R} \) to \(\mathbb{R} \). Is \(f \) invertible, and if it is, what is its inverse?
6. (15%) Given a fair six-sided dice with values 1 to 6, please answer the following questions.

(a) (5%) What is the probability of getting exactly three times of odd numbers if we roll the dice ten times?

(b) (5%) How many times should we roll the dice to guarantee that at least a value appears more than five times?

(c) (5%) Suppose that we roll the dice 20 times and the value \(i \) is observed \(x_i \) times for \(i = 1, 2, 3, ..., 6 \). Please determine the number of possible solutions for \(x_i \). (Hint: For example, \(x_1 = 20, x_2 = 0, x_3 = 0, x_4 = 0, x_5 = 0, x_6 = 0 \) is a possible solution representing the situation that the value of the dice is 1 for all 20 times.)

7. (20%) According to Figure 1 and Figure 2, please answer the following questions.

(a) (10%) Find the number of distinct paths of length three from \(A \) to \(C \) in the graph in Figure 1.

(b) (10%) Determine whether the graphs shown in Figure 2 are isomorphic or not and verify your answer.

Figure 1:

![Graph 1](image1)

Figure 2:

![Graph 2](image2)