1. (15%)
Two lossy homogenous dielectric media with dielectric constants $\epsilon_{r1} = 2$, $\epsilon_{r2} = 3$, and conductivities $\sigma_1 = 15 (mS)$, $\sigma_2 = 10 (mS)$ are in contact at the $z = 0$ plane. In the $z > 0$ region (region 1) a uniform electric field $\vec{E}_1 = 20\vec{a}_z - 50\vec{a}_y$ (V/m) exists. Find, in region 2, (a) the electric field \vec{E}_2 (5%), (b) the current density \vec{J}_2 (5%), (c) the polarization vector \vec{P}_2 (5%).

2. (10%)
Between the inner and outer conductors of a coaxial cable that has an inner conductor of radius a and outer conductor of inner radius b and a medium with permittivity ε and conductivity σ. Find (a) the capacitance per unit length. (5%) (b) the leakage resistance per unit length. (5%)

3. (15%)
The inner and outer radii of two concentric, thin, conducting, spherical shells are R_i and R_o, respectively. The space between the shells is filled with insulating material. The inner shell is connected to ground and the outer shell is maintained at a potential V_0. Between the shells, (a) find the electric potential distribution V (8%) (b) the electric field \vec{E} (7%).

4. (10%)
For a positive charge Q is located at the center of two concentric, thin, conducting, spherical shells with inner and outer radii R_i and R_o, respectively. The space between the shells is filled with material with relative permittivity $\varepsilon_r = 2$. Determine everywhere the (a) the electric potential distribution V. (5%) (b) the electric field \vec{E}. (5%)
5. (10%) A proton having an initial velocity of $1.0\times10^6 \hat{i}$ m/s enters a uniform magnetic field of magnitude 0.100 T with a direction perpendicular to the proton's velocity. Find the radius of curvature of the proton's path while in the field. The mass of proton is 1.67×10^{-27} kg.

6. (10%) A long, straight wire of radius R carries a steady current I that is uniformly distributed through the cross section of the wire. Calculate the magnetic field a distance r from the center of the wire in the region (a) (5%) $r \geq R$, (b) (5%) $r < R$.

7. (10%) The electric field intensity of a uniform plane wave in free space is given by $\vec{E} = 94.25 \cos(\omega t + 6z) \hat{j}$ V/m. Determine (a) (5%) the wave frequency and (b) (5%) the wavelength.

8. (20%) The electric field intensity of a uniform plane wave propagating in free space is known to be $377 e^{-j0.866z} e^{-j0.5y} \hat{i}$ V/m. It strikes a dielectric medium ($\varepsilon_r = 9$) at 30° with respect to the normal to the plane interface. Determine the (a) (10%) electric field intensity and (b) (10%) magnetic field intensity of the transmitted wave. Assume that the permeability of the medium is the same as that of free space. Here $\hat{i}, \hat{j}, \hat{k}$ represents unit vectors along the $+x, +y$ and $+z$ directions, respectively.