1. A two-dimensional flow field has the velocity components as follows, Figure 1:

\[u = ay e^{-t} \quad \text{and} \quad v = -ax e^{-t} \]

Please find the streamline equation \(f(x, y) = C \). (15%)

![Figure 1](image1)

2. The inlet and outlet diameter of a converging pipe is 10 cm and 5 cm, respectively. Oil with density of 1200 kg/m³ flows steadily through this pipe, where the friction effect can be neglected. The outlet is 3 m lower than the inlet. The gravitational acceleration is 9.81 m/s². Please determine the pressure drop between the inlet and outlet for a flow rate \(Q \) of 1000 L/min, Figure 2. (15%)

![Figure 2](image2)
3. Fluid from a stationary nozzle strikes a circular flat plate as shown in Fig. 1, where the plate is fixed on the ground. The fluid has the density of 10^3 kg/m^3 leaving nozzle steadily at the flow rate \(Q \) of 250 L/min and the diameter of nozzle is 15 cm. Fluid is directed normal to the plate and flows uniformly along the radial direction with a constant thickness on the circular plate after it hits the plate. The gravitational effect can be ignored. Please determine the normal force acting on the circular plate, in N. (10%)

![Figure 3]

4. The mass of a model plane is 0.8 kg and the average chord length \(c \) of its two wings is 40 cm, where the span \(b \) is 120 cm. Air is assumed with the density of 1.2 kg/m^3. The gravitational acceleration is 9.81 m/s^2. The lift coefficient of the wing at sufficient large Reynolds number can be described as follows, where \(\Lambda \) is the aspect ratio \(= b/c \):

\[
C_L = \frac{(\Lambda + 1)(\Lambda + 2)}{(\Lambda + 3)^2}
\]

Please estimate the take-off speed of this model plane, in m/s, if the lift of model plane is mainly delivered by its two wings and the reference area of wing \(A \) for calculating lift is defined as by the product of the span \(b \) and the average chord length \(c \). (10%)

![Figure 4]
5. A heat pump is absorbing heat from the cold outdoors at 7°C and supplying heat to a house at 27°C at a rate of 14,400 kJ/hr. If the power consumed by the heat pump is 2 kW, determine (a) the actual coefficient of performance of the heat pump (10%), (b) the highest possible coefficient of performance of the heat pump (10%).

6. Processes 1-2 and 2-3 are reversible and shown in Figure 5. Determine (a) the heat transfer, in kJ/kg, for the reversible process 1-3 (10%), (b) whether heat is absorbed or rejected during the reversible process 1-2 (10%).

![Figure 5](image)

7. A piston-cylinder device contains hydrogen gas initially at 400 kPa, 140°C, and 0.25 m³. The hydrogen is now expanded in a polytropic process ($P V^n = \text{constant}$) to 150 kPa and 20°C. Determine (a) the work done by hydrogen (5%), (b) the change in entropy of hydrogen, in kJ/K (5%). For hydrogen, $\gamma = 1.412$ kJ/kg K, $c_p = 14.307$ kJ/kg K.

Summary of equations

1. Continuity equation in the integral form
 $$\frac{\partial}{\partial t} \int_{\Omega} \rho v \, dV + \int_{\partial \Omega} \rho v \cdot n \, dA = 0$$

2. Linear momentum equation in the integral form
 $$\frac{\partial}{\partial t} \int_{\Omega} \rho v \, dV + \int_{\partial \Omega} \rho v \cdot n \, dA = \sum F_{\Omega}$$

3. Force balance along/normal to a streamline for steady, inviscid, incompressible flow
 - $F_x + \frac{1}{2} \rho V^2 + g h = C$ (along streamline)
 - $F_x + \int_{A} \rho h \, dA + g h = C$ (normal to streamline)

4. Lift and drag coefficient
 - $C_L = \frac{L}{\frac{1}{2} \rho U^2 A}$
 - $C_D = \frac{D}{\frac{1}{2} \rho U^2 A}$