1. Assume the B-E cut-in voltage for the transistor is 0.7 V, the C-E saturation voltage is 0.2 V for every transistor.
 (a) The measured value of V_C is 6.34 V. Determine I_B, I_E, I_C, V_{CE} and β for the circuit shown in Figure 1. (10%)
 (b) Consider the circuit shown in Figure 2. Let $\beta = 150$, $R_E = 0.2$ KΩ and $R_C = 1$ KΩ. Find R_1, R_2 such that the bias is stable and the quiescent output voltage is 0V. (10%)
 (c) Assuming $\beta = 50$, determine I_{BQ}, I_{CQ}, and V_{CEQ} for the circuit shown in Figure 3. (10%)
 (d) Assume C is short to a-c signal. Determine the voltage gain, and input impedance for the circuit shown in Figure 3. (10%)

2. For the NMOS common-source amplifier shown in Figure 4, the transistor parameters are: $V_{Th} = 2$V, $K_n = 1$ mA/V², and $\lambda = 0$. The circuit parameters are $V_{DD} = 12$V, $R_s = 2$KΩ, $R_D = R_L = 3$KΩ, $R_1 = 300$KΩ, and $R_2 = 200$KΩ.
 (a) Determine the quiescent values of I_D and V_{DS}. (5%)
 (b) Find the small-signal voltage gain. (5%)
 (c) Determine the maximum symmetrical swing in the output voltage. (10%)

Figure 1

Figure 2

Figure 3

Figure 4
3. For the circuit shown in Figure 5, the transistor parameters are:

\[V_{thD} = 1 \text{V}, \ V_{thL} = -1 \text{V}, \ K_{nD} = 1 \text{mA/V}^2, \ K_{nL} = 0.2 \text{mA/V}^2, \text{ and} \ \lambda_D = \lambda_L = 0.01 \text{V}^{-1}. \]

Assume the circuit is biased at \(V_{DD} = 5 \text{V} \).

(a) Analyze whether \(M_D \) and \(M_L \) are in saturation region or nonsaturation region when \(V_{GSD} \) increase from 0V to \(V_{DD} \). Draw the voltage transfer characteristic curve. (10%)

(b) Find \(V_{GSD} \) and \(I_{DQ} \) such that the Q-point is in the middle of the saturation region. (10%)

(c) Determine the small-signal voltage gain. (5%)

Remark: \(M_L \) is a N-channel depletion mode MOSFET \(M_D \) is a N-channel enhancement mode MOSFET

Figure 5

4. For the circuit shown in Figure 6, the parameters are: \(R_S = 0.1 \text{K}\Omega, R_1 = 20 \text{K}\Omega, R_2 = 2.2 \text{K}\Omega, R_E = 0.1 \text{K}\Omega, R_C = 2 \text{K}\Omega, C_C = 47 \mu\text{F}, \text{ and } V_{CC} = 10 \text{V}. \) The transistor parameters are \(V_{BE(ON)} = 0.7 \text{V}, \beta = 200, \text{ and } VA = \infty. \)

(a) Determine the corner frequency. (5%)
(b) Calculate the midband gain. (5%)
(c) Draw Bode plots for this circuit. (5%)

Figure 6