1. A steel spherical shell with Young's modulus E and Poisson's ratio ν is subjected to a uniform inner and outer pressure p.

Find the reduction δ of the inner diameter. (25%)

![Diagram of a spherical shell]

2. A cantilever AB, loaded at the end B, is supported by a shorter cantilever CD of the same cross section as cantilever AB.

Determine the pressure X between the two beams at C. (25%)

![Diagram of a cantilever]

3. A circular shaft AB consists of a 250 mm long, 20 mm diameter steel cylinder, in which a 125 mm long, 16 mm diameter cavity has been drilled from end B. The shaft is attached to fixed supports at both ends, and a $120 \, N \cdot m$ torque is applied at its midsection.

Determine the torque exerted on the shaft by each of the supports. (25%)

![Diagram of a shaft with torque applied]

4. A rectangular frame of uniform cross section is submitted to a uniformly distributed load of intensity p. Determine the bending moments M at the corners. (25%)

![Diagram of a rectangular frame]