1. Four people, a, b, c, and d, were in a race. Right before the race started, Dave said that he thought a would be the second and d would be the fourth, John thought a would be the first and b would be the second, and Paul thought c would be the second and d would be the fourth. If each of them had only one estimate right
 a. Write all the estimates in logical propositions (Use the propositions: A = "a is the first", B = "b is the second", C = "c is the third", D = "d is the fourth", P = "c is the second", Q = "a is the second").
 (5%)
 b. Use the logical operators (formal proof) to find the rank of a, b, c, and d.
 (10%)

2. Find a recurrence relation for the number of ways to fully parenthesize the expression
 \[w_1 + w_2 + w_3 + \ldots + w_n \]
 so that only two terms are added at a time; that is, parentheses are used to indicate the order in which the additions are performed. For example, the expression \([(w_1 + w_2) + w_3]\) is fully parenthesized, but \[(w_1 + w_2) + w_3\] is not.
 (10%)

3. Let \(Z(4) = \{0, 1, 2, 3\} \). Define the binary operator \(\oplus \) on \(Z(4) \) by
 \[x \oplus y = xy \pmod{4} \]
 for \(x, y \) in \(Z(4) \).
 a. Give the complete table of operator \(\oplus \) for \(Z(4) \).
 (5%)
 b. Determine and justify whether \((Z(4), \oplus) \) is a semigroup, a monoid, or a group.
 (5%)

4. Let \(G \) be a planar Hamiltonian simple graph with \(n \) vertices, and let \(C \) be a Hamiltonian cycle in \(G \). Then with respect to \(C \), prove \(\Sigma (k - 2)(t_k - s_k) = 0 \). Here \(t_k \) is the number of faces inside \(C \) whose boundary contain exactly \(k \) edges, and \(s_k \) is the number of faces outside \(C \) whose boundary contains exactly \(k \) edges.
 (15%)

5. Let \(M \) be the adjacency matrix of the simple graph \(G \),
 a. Show that the number of triangles in \(G \) is \(\frac{1}{6} \| M^3 \| \). Here \(\| M^3 \| \) denotes the sum of the elements of the main diagonal of \(M^3 \).
 (5%)
 b. Use the above formula, find the number of triangles in the following graph:
 (5%)

6. Write the trace of the following program using the following tree.
 Program:
   ```c
   void xx ( pointer ptr )
   { if (ptr) { xx (ptr -> left );
       xx (ptr -> right );
       printf("%d", ptr -> data );
   }
   }
   ```
 Tree:
   ```c
   +
   /|
   / |
   /  |
   -E-
   / |
   /  |
   /  |
   -D-
   / |
   /  |
   /  |
   -C-
   / |
   /  |
   /  |
   -A-
   ```
 (10%)
7. The following is a quicksort program.

```c
void quicksort ( int i, int j )
    /* sorts the records stored in array data between indexed by i and j in descending order. */
    { int p;
        if (i < j)
            { p = partition ( i, j );
                quicksort ( i, p-1 );
                quicksort ( p+1, j );
            }
    }

Write the algorithm of the inside function partition( i, j ). (15%)
```

8. Describe the functions(and the parameters) of the following three parts:
 i. void add (pointer *ptr, pointer node)
 { ...
 node -> link = *ptr;
 *ptr = node;
 }
 (5%)

 ii. void add (pointer *head, pointer *ptr, pointer node)
 { ...
 node -> link = NULL;
 if (*head) (ptr) ->link = node;
 else *head = node;
 *ptr = node;
 }
 (5%)

 iii. void add (pointer *ptr, pointer node)
 { ...
 if (IS_EMPTY (*ptr))
 { *ptr = node;
 node ->link = node;
 }
 else { node-> link = (*ptr) -> link;
 (*ptr) -> link = node;
 }
 }
 (5%)