1. Find the general solution of
\[y'' + 2y' + y = e^{-x} \ln x \]
(20%)

2. Solve the integral equation
\[f(t) = \cos(t) + e^{-2t} \int_0^t f(\alpha) e^{2\alpha} d\alpha \]
(20%)

3. (i) Find the matrix inverse \(A^{-1} \) of matrix
\[A = \begin{pmatrix} 1 & -2 & 4 \\ -1 & 1 & -3 \\ 1 & -1 & -4 \end{pmatrix} \]

(ii) For a system of linear equations \(AX = B \), in which \(A \) is the \(n \times n \) matrix of coefficients, \(X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \) and \(B = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} \). Discuss the conditions for the system to have (a) no solution; (b) one solution; (c) more than one solution
(20%)

4. Evaluate the integral
\[\oint_C z \, dx \]
where \(C \) is the circle \(r = a \) (\(a > 0 \)).
(20%)

5. Solve the boundary value problem
\[\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} \quad \text{for} \quad 0 < x < 1, \quad t > 0 \]
\[u(0,t) = u(1,t) = 0 \quad \text{for} \quad t \geq 0 \]
\[u(x,0) = 1 \quad \text{for} \quad 0 \leq x \leq 1 \]
(20%)